Monday, November 20, 2017

We share an ancestor who probably lived no more than 640 years ago


We all evolved from one single-celled organism that lived billions of years ago. I don’t see why this is so hard for some people to believe, given that all of us also developed from a single fertilized cell in just 9 months.

However, our most recent common ancestor is not that first single-celled organism, nor is it the first Homo sapiens, or even the first Cro-Magnon.

The majority of the people who read this blog probably share a common ancestor who lived no more than 640 years ago. Genealogical records often reveal interesting connections - the figure below has been cropped from a larger one from Pinterest.


You and I, whoever you are, have each two parents. Each of our parents have (or had) two parents, who themselves had two parents. And so on.

If we keep going back in time, and assume that you and I do not share a common ancestor, there will be a point where the theoretical world population would have to be impossibly large.

Assuming a new generation coming up every 20 years, and going backwards in time, we get a theoretical population chart like the one below. The theoretical population grows in an exponential, or geometric, fashion.


As we move back in time the bars go up in size. Beyond a certain point their sizes go up so fast that you have to segment the chart. Otherwise the bars on the left side of the chart disappear in comparison to the ones on the right side (as several did on the chart above). Below is the section of the chart going back to the year 1371.


The year 1371 is a little more than 640 years ago. (This post is revised from another dated a few years ago, hence the number 640.) And what is the theoretical population in that year if we assume that you and I have no common ancestors? The answer is: more than 8.5 billion people. We know that is not true.

Admittedly this is a somewhat simplistic view of this phenomenon, used here primarily to make a point. For example, it is possible that a population of humans became isolated 15 thousand years ago, remained isolated to the present day, and that one of their descendants just happened to be around reading this blog today.

Perhaps the most widely cited article discussing this idea is this one by Joseph T. Chang, published in the journal Advances in Applied Probability. For a more accessible introduction to the idea, see this article by Joe Kissell.

Estimates vary based on the portion of the population considered. There are also assumptions that have to be made based on migration and mating patterns, as well as the time for each generation to emerge and the stability of that number over time.

Still, most people alive today share a common ancestor who lived a lot more recently than they think. In most cases that common ancestor probably lived less than 640 years ago.

And who was that common ancestor? That person was probably a man who, due to a high perceived social status, had many consorts, who gave birth to many children. Someone like Genghis Khan.

Tuesday, October 24, 2017

Could the low testosterone problem be a mirage?


Low testosterone (a.k.a. “low T”) is caused by worn out glands no longer able to secrete enough T, right? At least this seems to be the most prevalent theory today, a theory that reminds me a lot of the “tired pancreas” theory () of diabetes. I should note that this low T problem, as it is currently presented, is one that affects almost exclusively men, particularly middle-aged men, not women. This is so even though T plays an important role in women’s health.

There are many studies that show associations between T levels and all kinds of diseases in men. But here is a problem with hormones: often several hormones vary together and in a highly correlated fashion. If you rely on statistics to reach conclusions, you must use techniques that allow you to rule out confounders; otherwise you may easily reach wrong conclusions. Examples are multivariate techniques that are sensitive to Simpson’s paradox and nonlinear algorithms; both of which are employed, by the way, by modern software tools such as WarpPLS (). Unfortunately, these are rarely, if ever, used in health-related studies.

Many low T cases may actually be caused by something other than tired T-secretion glands, perhaps a hormone (or set of hormones) that suppress T production; a T “antagonist”. What would be a good candidate? The figure below shows two graphs. It is from a study by Starks and colleagues, published in the Journal of the International Society of Sports Nutrition in 2008 (). The study itself is not directly related to the main point that this post tries to make, but the figure is.



Look at the two graphs carefully. The one on the left is of blood cortisol levels. The one on the right is of blood testosterone levels. Ignore the variation within each graph. Just compare the two graphs and you will see one interesting thing – cortisol and testosterone levels are inversely related. This is a general pattern in connection with stress-induced cortisol elevations, repeating itself over and over again, whether the source of stress is mental (e.g., negative thoughts) or physical (e.g., intense exercise).

And the relationship between cortisol and testosterone is strong. Roughly speaking, an increase in cortisol levels, from about 20 to 40 μg/dl, appears to bring testosterone levels down from about 8 to 5 ηg/ml. A level of 8 ηg/ml (the same as 800 ηg/dl) is what is normally found in young men living in urban environments. A level of 5 ηg/ml is what is normally found in older men living in urban environments.

So, testosterone levels are practically brought down to almost half of what they were before by that variation in cortisol.

Chronic stress can easily bring your cortisol levels up to 40 μg/dl and keep them there. More serious pathological conditions, such as Cushing’s disease, can lead to sustained cortisol levels that are twice as high. There are many other things that can lead to chronically elevated cortisol levels. For instance, sustained calorie restriction raises cortisol levels, with a corresponding reduction in testosterone levels. As the authors of a study () of markers of semistarvation in healthy lean men note, grimly:

“…testosterone (T) approached castrate levels …”

The study highlights a few important phenomena that occur under stress conditions: (a) cortisol levels go up, and testosterone levels go down, in a highly correlated fashion (as mentioned earlier); and (b) it is very difficult to suppress cortisol levels without addressing the source of the stress. Even with testosterone administration, cortisol levels tend to be elevated.

Isn't possible that cortisol levels go up because testosterone levels go down - reverse causality? Possible, but unlikely. Evidence that testosterone administration may reduce cortisol levels, when it is found, tends to be rather weak or inconclusive. A good example is a study by Rubinow and colleagues (). Not only were their findings based on bivariate (or unadjusted) correlations, but also on a chance probability threshold that is twice the level usually employed in statistical analyses; the level usually employed is 5 percent.

Let us now briefly shift our attention to dieting. Dieting is the main source of calorie restriction in modern urban societies; an unnatural one, I should say, because it involves going hungry in the presence of food. Different people have different responses to dieting. Some responses are more extreme, others more mild. One main factor is how much body fat you want to lose (weight loss, as a main target, is a mistake); another is how low you expect body fat to get. Many men dream about six-pack abs, which usually require single-digit body fat percentages.

The type of transformation involving going from obese to lean is not “cost-free”, as your body doesn’t know that you are dieting. The body “sees” starvation, and responds accordingly.

Your body is a little bit like a computer. It does exactly what you “tell” it to do, but often not what you want it to do. In other words, it responds in relatively predictable ways to various diet and lifestyle changes, but not in the way that most of us want. This is what I call compensatory adaptation at work (). Our body often doesn’t respond in the way we expect either, because we don’t actually know how it adapts; this is especially true for long-term adaptations.

What initially feels like a burst of energy soon turns into something a bit more unpleasant. At first the unpleasantness takes the form of psychological phenomena, which were probably the “cheapest” for our bodies to employ in our evolutionary past. Feeling irritated is not as “expensive” a response as feeling physically weak, seriously distracted, nauseated etc. if you live in an environment where you don’t have the option of going to the grocery store to find fuel, and where there are many beings around that can easily kill you.

Soon the responses take the form of more nasty body sensations. Nearly all of those who go from obese to lean will experience some form of nasty response over time. The responses may be amplified by nutrient deficiencies. Obesity would have probably only been rarely, if ever, experienced by our Paleolithic ancestors. They would have never gotten obese in the first place. Going from obese to lean is as much a Neolithic novelty as becoming obese in the first place, although much less common.

And it seems that those who have a tendency toward mental disorders (e.g., generalized anxiety, manic-depression), even if at a subclinical level under non-dieting conditions, are the ones that suffer the most when calorie restriction is sustained over long periods of time. Most reports of serious starvation experiments (e.g., Roy Walford’s Biosphere 2 experiment) suggest the surfacing of mental disorders and even some cases of psychosis.

Emily Deans has a nice post () on starvation and mental health.

But you may ask: What if my low T problem is caused by aging; you just said that older males tend to have lower T? To which I would reply: Isn’t possible that the lower T levels normally associated with aging are in many cases a byproduct of higher stress hormone levels? Take a look at the figure below, from a study of age-related cortisol secretion by Zhao and colleagues ().



As you can see in the figure, cortisol levels tend to go up with age. And, interestingly, the range of variation seems very close to that in the earlier figure in this post, although I may be making a mistake in the conversion from nmol/l to ηg/ml. As cortisol levels go up, T levels should go down in response. There are outliers. Note the male outlier at the middle-bottom part, in his early seventies. He is represented by a filled circle, which refers to a disease-free male.

Dr. Arthur De Vany claims to have high T levels in his 70s. It is possible that he is like that outlier. If you check out De Vany’s writings, you’ll see his emphasis on leading a peaceful, stress-free, life (). If money, status, material things, health issues etc. are very important for you when you are young (most of us, a trend that seems to be increasing), chances are they are going to be a major source of stress as you age.

Think about individual property accumulation, as it is practiced in modern urban environments, and how unnatural and potentially stressful it is. Many people subconsciously view their property (e.g., a nice car, a bunch of shares in a publicly-traded company) as their extended phenotype. If that property is damaged or loses value, the subconscious mental state evoked is somewhat like that in response to a piece of their body being removed. This is potentially very stressful; a stress source that doesn’t go away easily. What we have here is very different from the types of stress that our Paleolithic ancestors faced.

So, what will happen if you take testosterone supplementation to solve your low T problem? If your problem is due to high levels of cortisol and other stress hormones (including some yet to be discovered), induced by stress, and your low T treatment is long-term, your body will adapt in a compensatory way. It will “sense” that T is now high, together with high levels of stress.

Whatever form long-term compensatory adaptation may take in this scenario, somehow the combination of high T and high stress doesn’t conjure up a very nice image. What comes to mind is a borderline insane person, possibly with good body composition, and with a lot of self-confidence – someone like the protagonist of the film American Psycho.

Again, will the high T levels, obtained through supplementation, suppress cortisol? It doesn’t seem to work that way, at least not in the long term. In fact, stress hormones seem to affect other hormones a lot more than other hormones affect them. The reason is probably that stress responses were very important in our evolutionary past, which would make any mechanism that could override them nonadaptive.

Today, stress hormones, while necessary for a number of metabolic processes (e.g., in intense exercise), often work against us. For example, serious conflict in our modern world is often solved via extensive writing (through legal avenues). Violence is regulated and/or institutionalized – e.g., military, law enforcement, some combat sports. Without these, society would break down, and many of us would join the afterlife sooner and more violently than we would like (see Pinker’s take on this topic: ).

Sir, the solution to your low T problem may actually be found elsewhere, namely in stress reduction. But careful, you run the risk of becoming a nice guy.

Friday, September 29, 2017

Gaining muscle and losing fat at the same time: Various issues and two key requirements

In a previous post (), I mentioned that the idea of gaining muscle and losing fat at the same time seems impossible to most people because of three widely held misconceptions: (a) to gain muscle you need a calorie surplus; (b) to lose fat you need a calorie deficit; and (c) you cannot achieve a calorie surplus and deficit at the same time.

The scenario used to illustrate what I see as a non-traumatic move from obese or seriously overweight to lean is one in which weight loss and fat loss go hand in hand until a relatively lean level is reached, beyond which weight is maintained constant (as illustrated in the schematic graph below). If you are departing from an obese or seriously overweight level, it may be advisable to lose weight until you reach a body fat level of around 21-24 percent for women or 14-17 percent for men. Once you reach that level, it may be best to stop losing weight, and instead slowly gain muscle and lose fat, in equal amounts. I will discuss the rationale for this in more detail in my next post; this post will focus on addressing the misconceptions above.


Before I address the misconceptions, let me first clarify that, when I say “gaining muscle” I do not mean only increasing the amount of protein stored in muscle tissue. Muscle tissue is mostly water, by far. An important component of muscle tissue is muscle glycogen, which increases dramatically with strength training, and also tends to increase the amount of water stored in muscle. So, when you gain muscle, you gain a significant amount of water.

Now let us take a look at the misconceptions. The first misconception, that to gain muscle you need a calorie surplus, was dispelled in a previous post featuring a study by Ballor and colleagues (). In that study, obese subjects combined strength training with a mild calorie deficit, and gained muscle. They also lost fat, but ended up a bit heavier than at the beginning of the intervention. Another study along the same lines was linked by Clint (thanks) in the comments section under the last post ().

The second misconception, that to lose fat you need a calorie deficit; is related to the third, that you cannot achieve a calorie surplus and deficit at the same time. In part these misconceptions are about semantics, as most people understand “calorie deficit” to mean “constant calorie deficit”. One can easily vary calorie intake every other day, generating various calorie deficits and surpluses over a week, but with no overall calorie deficit or surplus for the entire week. This is why I say that one can achieve a calorie surplus and deficit “at the same time”. But let us make a point very clear, most of the evidence that I have seen so far suggests that you do not need a calorie deficit to lose fat, but you do need a calorie deficit to lose structural weight (i.e., non-water weight). With a few exceptions, not many people will want to lose structural weight by shedding anything other than body fat. One exception would be professional athletes who are already very lean and yet are very big for the weight class in which they compete, being unable to "make weight" through dehydration.

Perhaps the most surprising to some people is that, based on my own experience and that of several HCE () users, you don’t even need to vary your calorie intake that much to gain muscle and lose fat at the same time. You can achieve that by eating enough to maintain your body weight. In fact, you can even slowly increase your calorie intake over time, as muscle growth progresses beyond the body fat lost. And here I mean increasing your calorie intake very slowly, proportionally to the amount of muscle you gain; which also means that the incremental increase in calorie intake will vary from person to person. If you are already relatively lean, at around 21-24 percent of body fat for women and 14-17 percent for men, gaining muscle and losing fat in equal amounts will lead to a visible change in body composition over time () ().

Two key requirements seem to be common denominators for most people. You must eat protein regularly; not because muscle tissue is mostly protein, but because protein seems to act as a hormone, signaling to muscle tissue that it should repair itself. (Many hormones are proteins, actually peptides, and also bind to receptor proteins.) And you also must conduct strength training to the point that you are regularly hitting the supercompensation window (). This takes a lot of individual customization (). You can achieve that with body weight exercises, although free weights and machines seem to be generally more effective. Keep in mind that individual customization will allow you to reach your "sweet spots", but that still results will vary across individuals, in some cases dramatically.

If you regularly hit the supercompensation window, you will be progressively spending slightly more energy in each exercise session, chiefly in the form of muscle glycogen, as you progress with your strength training program. You will also be creating a hormonal mix that will increase the body’s reliance on fat as a source of energy during recovery. As a compensatory adaptation (), your body will gradually increase the size of its glycogen stores, raising insulin sensitivity and making it progressively more difficult for glucose to become body fat.

Since you will be progressively spending slightly more energy over time due to regularly hitting the supercompensation window, that is another reason why you will need to increase your calorie intake. Again, very slowly, proportionally to your muscle gain. If you do not do that, you will provide a strong stimulus for autophagy () to occur, which I think is healthy and would even recommend from time to time. In fact, one of the most powerful stimuli to autophagy is doing strength training and fasting afterwards. If you do that only occasionally (e.g., once every few months), you will probably not experience muscle loss or gain, but you may experience health improvements as a result of autophagy.

The human body is very adaptable, so there are many variations of the general strategy above.

Thursday, September 7, 2017

PLS Applications Symposium; 11 - 13 April 2018; Laredo, Texas


PLS Applications Symposium; 11 - 13 April 2018; Laredo, Texas
(Abstract submissions accepted until 15 February 2018)

*** Health researchers ***

The research techniques discussed in this Symposium are finding growing use among health researchers. This is in part due to steady growth in the use of the software WarpPLS (visit: http://warppls.com) among those researchers. For those interested in learning more, a full-day workshop will be conducted (see below).

*** Only abstracts are needed for the submissions ***

The partial least squares (PLS) method has increasingly been used in a variety of fields of research and practice, particularly in the context of PLS-based structural equation modeling (SEM). The focus of this Symposium is on the application of PLS-based methods, from a multidisciplinary perspective. For types of submissions, deadlines, and other details, please visit the Symposium’s web site:

http://plsas.net

*** Workshop on PLS-SEM ***

On 11 April 2018 a full-day workshop on PLS-SEM will be conducted by Dr. Ned Kock and Dr. Geoffrey Hubona, using the software WarpPLS. Dr. Kock is the original developer of this software, which is one of the leading PLS-SEM tools today; used by thousands of researchers from a wide variety of disciplines, and from many different countries. Dr. Hubona has extensive experience conducting research and teaching topics related to PLS-SEM, using WarpPLS and a variety of other tools. This workshop will be hands-on and interactive, and will have two parts: (a) basic PLS-SEM issues, conducted in the morning (9 am - 12 noon) by Dr. Hubona; and (b) intermediate and advanced PLS-SEM issues, conducted in the afternoon (2 pm - 5 pm) by Dr. Kock. Participants may attend either one, or both of the two parts.

The following topics, among others, will be covered - Running a Full PLS-SEM Analysis - Conducting a Moderating Effects Analysis - Viewing Moderating Effects via 3D and 2D Graphs - Creating and Using Second Order Latent Variables - Viewing Indirect and Total Effects - Viewing Skewness and Kurtosis of Manifest and Latent Variables - Viewing Nonlinear Relationships - Solving Collinearity Problems - Conducting a Factor-Based PLS-SEM Analysis - Using Consistent PLS Factor-Based Algorithms - Exploring Statistical Power and Minimum Sample Sizes - Exploring Conditional Probabilistic Queries - Exploring Full Latent Growth - Conducting Multi-Group Analyses - Assessing Measurement Invariance - Creating Analytic Composites.

-----------------------------------------------------------
Ned Kock
Symposium Chair
http://plsas.net

Sunday, August 27, 2017

Sudden cholesterol increase? It may be psychological


There are many published studies with evidence that cholesterol levels are positively associated with heart disease. In multivariate analyses the effects are usually small, but they are still there. On the other hand, there is also plenty of evidence that cholesterol is beneficial in terms of health. Here of course I am referring to the health of humans, not of the many parasites that benefit from disease.

For example, there is evidence () that cholesterol levels are negatively associated with mortality (i.e., higher cholesterol leading to lower mortality), and are positively associated with vitamin D production from skin exposure to sunlight ().

Most of the debris accumulated in atheromas are made up of macrophages, which are specialized cells that “eat” cell debris (ironically) and some pathogens. The drug market is still hot for cholesterol-lowering drugs, often presented in TV and Internet ads as effective tools to prevent formation of atheromas.

But what about macrophages? What about calcium, another big component of atheromas? If drugs were to target macrophages for atheroma prevention, drug users may experience major muscle wasting and problems with adaptive immunity, as macrophages play a key role in muscle repair and antibody formation. If drugs were to target calcium, users may experience osteoporosis.

So cholesterol is the target, because there is a “link” between cholesterol and atheroma formation. There is also a link between the number of house fires in a city and the amount of firefighting activity in the city, but we don’t see mayors announcing initiatives to reduce the number of firefighters in their cities to prevent house fires.

When we talk about variations in cholesterol, we usually mean variations in cholesterol carried by LDL particles. That is because LDL cholesterol seems to be very “sensitive” to a number of factors, including diet and disease, presenting quite a lot of sudden variation in response to changes in those factors.

LDL particles seem to be intimately involved with disease, but do not be so quick to conclude that they cause disease. Something so widespread and with so many functions in the human body could not be primarily an agent of disease that needs to be countered with statins. That makes no sense.

Looking at the totally of evidence linking cholesterol with health, it seems that cholesterol is extremely important for the human body, particularly when it is under attack. So the increases in LDL cholesterol associated with various diseases, notably heart disease, may not be because cholesterol is causing disease, but rather because cholesterol is being used to cope with disease.

LDL particles, and their content (including cholesterol), may be used by the body to cope with conditions that themselves cause heart disease, and end up being blamed in the process. The lipid hypothesis may be a classic case of reverse causation. A case in point is that of cholesterol responses to stress, particularly mental stress.

Grundy and Griffin () studied the effects of academic final examinations on serum cholesterol levels in 2 groups of medical students in the winter and spring semesters (see table below). During control periods, average cholesterol levels in the two groups were approximately 213 and 216 mg/dl. During the final examination periods, average cholesterol levels were 248 and 240 mg/dl. These measures were for winter and spring, respectively.



One could say that even the bigger increase from 213 to 248 is not that impressive in percentage terms, approximately 16 percent. However, HDL cholesterol does not go up significantly in response to sustained (e.g., multi-day) stress, it actually goes down, so the increases reported can be safely assumed to be chiefly due to LDL cholesterol. For most people, LDL particles are the main carriers of cholesterol in the human body. Thus, in percentage terms, the increases in LDL cholesterol are about twice those reported for total cholesterol.

A 32-percent increase (16 x 2) in LDL cholesterol would not go unnoticed today. If one’s LDL cholesterol were to be normally 140 mg/dl, it would jump to 185 mg/dl with a 32-percent increase. It looks like the standard deviations were more than 30 in the study. (This is based on the standard errors reported, and assuming that the standard deviation equals the standard error multiplied by the square root of the sample size.) So we can guess that several people might go from 140 to 215 or more (this is LDL cholesterol, in mg/dl) in response to the stress from exams.

And the effects above were observed with young medical students, in response to the stress from exams. What about a middle-aged man or woman trying to cope with chronic mental stress for months or years, due to losing his or her job, while still having to provide for a family? Or someone who has just been promoted, and finds himself or herself overwhelmed with the new responsibilities?

Keep in mind that sustained dieting can be a major stressor for some people, particular when one gets to that point in the dieting process where he or she gets regularly into negative nitrogen balance (muscle loss). So you may have heard from people saying that, after months or years of successful dieting, their cholesterol levels are inexplicably going up. Well, this post provides one of many possible explanations for that.

The finding that cholesterol goes up with stress has been replicated many times. It has been known for a long time, with studies dating back to the 1950s. Wertlake and colleagues () observed an increase in average cholesterol levels from 214 to 238 (in mg/dl); also among medical students, in response to the mental and emotional stress of an examination week. A similar study to the one above.

Those enamored with the idea of standing up the whole day, thinking that this will make them healthy, should know that performing cognitively demanding tasks while standing up is a known stressor. It is often used in research where stress must be induced to create an experimental condition. Muldoon and colleagues () found that people performing a mental task while standing experienced an increase in serum cholesterol of approximately 22 points (in mg/dl).

What we are not adapted for is sitting down for long hours in very comfortable furniture (, ). But our anatomy clearly suggests adaptations for sitting down, particularly when engaging in activities that resemble tool-making, a hallmark of the human species. Among modern hunter-gatherers, tool-making is part of daily life, and typically it is much easier to accomplish sitting down than standing up.

Modern urbanites could be seen as engaging in activities that resemble tool-making when they produce things at work for internal or external customers, whether those things are tangible or intangible.

So, stress is associated with cholesterol levels, and particularly with LDL cholesterol levels. Diehard lipid hypothesis proponents may argue that this is how stress is associated with heart disease: stress increases cholesterol which increases heart disease. Others may argue that one of the reasons why LDL cholesterol levels are sometimes found to be associated with heart disease-related conditions, such as chronic stress, and other health conditions is that the body is using LDL cholesterol to cope with those conditions.

Specifically regarding mental stress, a third argument has been put forth by Patterson and colleagues, who claimed that stress-mediated variations in blood lipid concentrations are a secondary result of decreased plasma volume. The cause, in their interpretation, was unspecified – “vascular fluid shifts”. However, when you look at the numbers reported in their study, you still see a marked increase in LDL cholesterol, even controlling for plasma volume. And this is all in response to “10 minutes of mental arithmetic with harassment” ().

I tend to think that the view that cholesterol increases with stress because cholesterol is used by the body to cope with stress is the closest to the truth. Among other things, stress increases the body’s overall protein demand, and cholesterol is used in the synthesis of many proteins. This includes proteins used for signaling, also known as hormones.

Cholesterol also seems to be a diet marker, tending to go up in high fat diets. This is easier to explain. High fat diets increase the demand for bile production, as bile is used in the digestion of fat. Most of the cholesterol produced by the human body is used to make bile.

Monday, July 10, 2017

Hands-On Workshop on PLS-SEM with WarpPLS; 12-13 August 2017; Penang, Malaysia


Structural equation modeling (SEM), or path analysis with latent variables, is one of the most general and comprehensive statistical analysis methods. Path analysis, multiple regression, ANCOVA, ANOVA and other widely used statistical analysis methods can be seen as special cases of SEM.

SEM use employing WarpPLS has been growing steadily among researchers investigating health-related topics.

We will be conducting a two-day hands-on workshop on SEM employing partial least squares methods (PLS-SEM) with WarpPLS. This software conducts composite-based (e.g., PLS-based) as well as factor-based SEM analyses. Factor-based SEM combines the precision of covariance-based SEM with the flexibility and ease-of-use of composite-based SEM. The dates are 12-13 August 2017. The workshop will take place in Penang, Malaysia.

For more details, please go to:

http://bit.ly/2tZRLKX

or

https://warppls.blogspot.com/2017/07/hands-on-workshop-on-pls-sem-with.html

Friday, June 30, 2017

Eating fish whole: Sardines

Different parts of a fish have different types of nutrients that are important for our health; this includes bones and organs. Therefore it makes sense to consume the fish whole, not just filets made from it. This is easier to do with small than big fish.

Small fish have the added advantage that they have very low concentrations of metals, compared to large fish. The reason for this is that small fish are usually low in the food chain, typically feeding mostly on plankton, especially algae. Large carnivorous fish tend to accumulate metals in their body, and their consumption over time may lead to the accumulation of toxic levels of metals in our bodies.

One of my favorite types of small fish is the sardine. The photo below is of a dish of sardines and vegetables that I prepared recently. Another small fish favorite is the smelt (see this post). I buy wild-caught sardines regularly at the supermarket.


Sardines are very affordable, and typically available throughout the year. In fact, sardines usually sell for the lowest price among all fish in my supermarket; lower even than tilapia and catfish. I generally avoid tilapia and catfish because they are often farmed (tilapia, almost always), and have a poor omega-6 to omega-3 ratio. Sardines are rich in omega-3, which they obtain from algae. They have approximately 14 times more omega-3 than omega-6 fatty acids. This is an excellent ratio, enough to make up for the poorer ratio of some other foods consumed on a day.

This link gives a nutritional breakdown of canned sardines; possibly wild, since they are listed as Pacific sardines. (Fish listed as Atlantic are often farm-raised.) The wild sardines that I buy and eat probably have a higher vitamin and mineral content that the ones the link refers to, including higher calcium content, because they are not canned or processed in any way. Two sardines should amount to a little more than 100 g; of which about 1.6 g will be the omega-3 content. This is a pretty good amount of omega-3, second only to a few other fish, like wild-caught salmon.

Below is a simple recipe. I used it to prepare the sardines shown on the photo above.

- Steam cook the sardines for 1 hour.
- Spread the steam cooked sardines on a sheet pan covered with aluminum foil; use light olive oil to prevent the sardines from sticking to the foil.
- Preheat the oven to 350 degrees Fahrenheit.
- Season the steam cooked sardines to taste; I suggest using a small amount of salt, and some chili powder, garlic powder, cayenne pepper, and herbs.
- Bake the sardines for 30 minutes, turn the oven off, and leave them there for 1 hour.

The veggies on the plate are a mix of the following: sweet potato, carrot, celery, zucchini, asparagus, cabbage, and onion. I usually add spinach but I had none around today. They were cooked in a covered frying pan, with olive oil and a little bit of water, in low heat. The cabbage and onion pieces were added to the mix last, so that in the end they had the same consistency as the other veggies.

I do not clean, or gut, my sardines. Normally I just wash them in water, as they come from the supermarket, and immediately start cooking them. Also, I eat them whole, including the head and tail. Since they feed primarily on plant matter, and have a very small digestive tract, there is not much to be “cleaned” off of them anyway. In this sense, they are like smelts and other small fish.

For many years now I have been eating them like that; and so have my family and some friends. Other than some initial ew’s, nobody has ever had even a hint of a digestive problem as a result of eating the sardines like I do. This is very likely the way most of our hominid ancestors ate small fish.

If you prepare the sardines as above, they will be ready to store, or eat somewhat cold. There are several variations of this recipe. For example, you can bake the sardines for 40 minutes, and then serve them hot.

You can also add the stored sardines later to a soup, lightly steam them in a frying pan (with a small amount of water), or sauté them for a meal. For the latter I would recommend using coconut oil and low heat. Butter can also be used, which will give the sardines a slightly different taste.

Sunday, May 28, 2017

Muscle loss during short-term fasting

This is an issue that often comes up in online health discussions, and was the topic of a conversation I had the other day with a friend about some of the benefits of intermittent fasting. Please note that the term "fast" is used in this post as synonymous with a period of time in which only water is consumed. If one consumes, say, a carrot during a 10 h "fast", then that is not really a fast.

Can the benefits of intermittent fasting be achieved without muscle loss? The answer is “yes”, to the best of my knowledge.

Even if you are not interested in bulking up or becoming a bodybuilder, you probably want to keep the muscle tissue you have. As a norm, it is generally easier to lose muscle than it is to gain it. Fat, on the other hand, can be gained very easily. This is today, in modern urban societies. Among our hominid ancestors, this situation was probably reversed to a certain extent.

Body fat percentage is positively correlated with measures of inflammation markers and the occurrence of various health problems. Since muscle tissue makes up lean body mass, which excludes fat, it is by definition negatively correlated with inflammation markers and health problems.

As muscle mass increases, so does health; as long as the increase in muscle mass is “natural” – i.e., it comes naturally for the individual, ideally without anything other than unprocessed food. Unnatural muscle gain may increase health temporarily, but problems eventually happen. For example, several years ago a colleague of mine gained a great deal of muscle mass by taking steroids. A few months later he had a spinal disc herniation while lifting, and never fully recovered. About a year ago he was obese, diabetic, and considering bariatric surgery.

If you are a natural lightweight, your frame may not adapt fast enough make you a natural heavyweight. And there is nothing wrong with being a natural lightweight.

In short-term fasts (e.g., up to 24 h) one can indeed lose some muscle mass as the body produces glucose using amino acids in muscle tissue through a process known as gluconeogenesis. In this sense, muscle is the body’s main reserve of glucose. Adipocytes are the body’s main reserves of fat.

Muscle loss is not pronounced in short-term fasts though. It occurs after the body’s glycogen reserves, particularly those in the liver, are significantly depleted. This often starts happening 8 to 12 hours into the fast, for people who do not fast regularly, and depending on how depleted their liver  glycogen (liver "sugar") reserves are when they start fasting. Those who fast regularly tend to have greater reserves of liver glycogen, a form of compensatory adaptation, and could go on fasting for as much as 20 h or so before their bodies need to resort to muscle catabolism to meet the brain's hunger for glucose (often about 5 g / h).

The liver is the main store of body sugar used to supply the glucose needs of the brain. This is interesting, since skeletal muscle often stores 5 times more sugar than the liver. That muscle sugar, also stored as glycogen, is pretty much "locked". It can be tapped during intense physical exertion (e.g., sprints, weight training), and pretty much nothing else can release it. The brains of our ancestors living 200 thousand years ago needed as much glucose as ours do, but their fight-or-flight needs took precedence. Our body today is like that; we are largely adapted to life in our ancestral past.

When the body is running short on glycogen, primarily liver glycogen, it becomes increasingly reliant on fat as a source of energy, sparing muscle tissue. That is, it burns fat and certain byproducts of fat metabolism, such as ketone bodies. This benign state is known as ketosis; not to be confused with ketoacidosis, which is a pathological state. There is evidence that ketosis is a more efficient state from a metabolic perspective (see, e.g., Taubes, 2007).

Often people feel an increase in energy, cognitive ability, and stress when they fast.

The brain also runs on fat (through ketone byproducts) while in ketosis, although it still needs some glucose to function properly. That is primarily where muscle tissue comes into the picture, to provide the glucose that the brain needs to function. While glucose can also be made from fat, more specifically a lipid component called glycerol, this usually happens only during very prolonged fasting and starvation.

You do not have to consume carbohydrates at all to make up for the glycogen depletion, after you break the fast. Dietary protein will do the job, as it is used in gluconeogenesis as well. However, it has to be plenty of protein, because of the loss due to conversion to glucose. This picture is complicated a bit by one interesting fact: the body tends to use protein first to meet its caloric needs, then resorting to carbohydrates and fat. Only ethanol takes precedence over protein.

Surprising? Think about this. Many animals, including humans, have a gene (frequently called the "myostatin gene") whose key function is to prevent amino acid storage in muscle beyond a certain point. Those people who have a mutation that impairs the function of this gene tend to put on muscle very easily, have low body fat percentages, and feel a lot of energy all the time. They are also hungry all the time. This genetic mutation is very rare. Children who have it look very muscular, and tend to grow to below-average height as adults.

Dietary protein also leads to an insulin response, which is comparable to that elicited by glucose. The difference is that protein also leads to other hormonal responses that have a counterbalancing effect to insulin (e.g., secretion of glucagon), by allowing for the body's use of fat as a source of energy. Insulin, by itself, promotes fat deposition and prevents fat release at the same time.

When practicing intermittent fasting, one can increase protein synthesis by doing resistance exercise (weight training, HIT), which tips the scale toward muscle growth, and away from muscle catabolism. Having said that, doing resistance exercise while fasting is usually not a good idea.

A combination of intermittent fasting and resistance exercise may actually lead to significant muscle gain in the long term. Fasting itself promotes the secretion of hormones (e.g., growth hormone) that have anabolic effects. The following sites focus on muscle gain through intermittent fasting; the bloggers are living proof that it works.


  http://leangains.com/

Muscle catabolism happens all the time, even in the absence of fasting. As with many tissues in the body (e.g., bones), muscle is continuously synthesized and degraded. Muscle tissue grows when that balance is tipped toward synthesis, and is lost otherwise.

Muscle will atrophy (i.e., be degraded) if not used, even if you are not fasting. In fact, you can eat a lot of protein and carbohydrates and still lose muscle. Just note what happens when an arm or a leg is immobilized in a cast for a long period of time.

Short-term fasting is healthy, probably because it happened frequently enough among our hominid ancestors to lead to selective pressures for metabolic and physiological solutions. Consequently, our body is designed to function well while fasting, and triggering those mechanisms correctly may promote overall health.

The relationship between fasting and health likely follows a nonlinear pattern, possibly an inverted U-curve pattern. It brings about benefits up until a point, after which some negative effects ensue.

Long-term fasting may cause severe heart problems, and eventually death, as the heart muscle is used by the body to produce glucose. Here the brain has precedence over the heart, so to speak.

Voluntary, and in some cases forced, short-term fasting was likely very common among our Stone Age ancestors; and consumption of large amounts of high glycemic index carbohydrates very uncommon (Boaz & Almquist, 2001).

References:

Boaz, N.T., & Almquist, A.J. (2001). Biological anthropology: A synthetic approach to human evolution. Upper Saddle River, NJ: Prentice Hall.

Taubes, G. (2007). Good calories, bad calories: Challenging the conventional wisdom on diet, weight control, and disease. New York, NY: Alfred A. Knopf.

Saturday, April 29, 2017

Amino acids in skeletal muscle: Are protein supplements as good as advertised?

When protein-rich foods, like meat, are ingested they are first broken down into peptides through digestion. As digestion continues, peptides are broken down into amino acids, which then enter circulation, becoming part of the blood plasma. They are then either incorporated into various tissues, such as skeletal muscle, or used for other purposes (e.g., oxidation and glucose generation). The table below shows the amino acid composition of blood plasma and skeletal muscle. It was taken from Brooks et al. (2005), and published originally in a classic 1974 article by Bergström and colleagues. Essential amino acids, shown at the bottom of the table, are those that have to be consumed through the diet. The human body cannot synthesize them. (Tyrosine is essential in children; in adults tryptophan is essential.)


The data is from 18 young and healthy individuals (16 males and 2 females) after an overnight fast. The gradient is a measure that contrasts the concentration of an amino acid in muscle against its concentration in blood plasma. Amino acids are transported into muscle cells by amino acid transporters, such as the vesicular glutamate transporter 1 (VGLUT1). Transporters exist because without them a substance’s gradient higher or lower than 1 would induce diffusion through cell membranes; that is, without transporters anything would enter or leave cells.

Research suggests that muscle uptake of amino acids is positively correlated with the concentration of the amino acids in plasma (as well as the level of activity of transporters) and that this effect is negatively moderated by the gradient. This is especially true after strength training, when protein synthesis is greatly enhanced. In other words, if the plasma concentration of an amino acid such as alanine is high, muscle uptake will be increased (with the proper stimulus; e.g., strength training). But if a lot of alanine is already present in muscle cells when compared to plasma (which is normally the case, since alanine’s 7.3 gradient is relatively high), more plasma alanine will be needed to increase muscle uptake.

The amino acid makeup of skeletal muscle is a product of evolutionary forces, which largely operated on our Paleolithic ancestors. Those ancestors obtained their protein primarily from meat, eggs, vegetables, fruits, and nuts. Vegetables and fruits today are generally poor sources of protein; that was probably the case in the Paleolithic as well. Also, only when very young our Paleolithic ancestors obtained their protein from human milk. It is very unlikely that they drank the milk of other animals. Still, many people today possess genetic adaptations that enable them to consume milk (and dairy products in general) effectively due to a more recent (Neolithic) ancestral heritage. A food-related trait can evolve very fast – e.g., in a few hundred years.

One implication of all of this is that protein supplements in general may not be better sources of amino acids than natural protein-rich foods, such as meat or eggs. Supplements may provide more of certain amino acids than others sources, but given the amino acid makeup of skeletal muscle, a supplemental overload of a particular amino acid is unlikely to be particularly healthy. That overload may induce an unnatural increase in amino acid oxidation, or an abnormal generation of glucose through gluconeogenesis. Depending on one’s overall diet, those may in turn lead to elevated blood glucose levels and/or a caloric surplus. The final outcome may be body fat gain.

Another implication is that man-made foods that claim to be high in protein, and that are thus advertised as muscle growth supplements, may actually be poor sources of those amino acids whose concentration in muscle are highest. (You need to check the label for the amino acid composition, and trust the manufacturer.) Moreover, if they are sources of nonessential amino acids, they may overload your body if you consume a balanced diet. Interestingly, nonessential amino acids are synthesized from carbon sources. A good source of carbon is glucose.

Among the essential amino acids are a group called branched-chain amino acids (BCAA) – leucine, isoleucine, and valine. Much is made of these amino acids, but their concentration in muscle in adults is not that high. That is, they do not contribute significantly as building blocks to protein synthesis in skeletal muscle. What makes BCAAs somewhat unique is that they are highly ketogenic, and somewhat glucogenic (via gluconeogenesis). They also lead to insulin spikes. Ingestion of BCAAs increases the blood concentration of two of the three human ketone bodies (acetone and acetoacetate). Ketosis is both protein and glycogen sparing (but gluconeogenesis is not), which is among the reasons why ketosis is significantly induced by exercise (blood ketones concentration is much more elevated after exercise than after a 20 h fast). This is probably why some exercise physiologists and personal trainers recommend consumption of BCAAs immediately prior to or during anaerobic exercise.

Why do carnivores often consume prey animals whole? (Consumption of eggs is not the same, but similar, because an egg is the starting point for the development of a whole animal.) Carnivores consume prey animals whole arguably because prey animals have those tissues (muscle, organ etc. tissues) that carnivores also have, in roughly the same amounts. Prey animals that are herbivores do all the work of converting their own prey (plants) to tissues that they share with carnivores. Carnivores benefit from that work, paying back herbivores by placing selective pressures on them that are health-promoting at the population level. (Carnivores usually target those prey animals that show signs of weakness or disease.)

Supplements would be truly natural if they provided nutrients that mimicked eating an animal whole. Most supplements do not get even close to doing that; and this includes protein supplements.

Reference

Brooks, G.A., Fahey, T.D., & Baldwin, K.M. (2005). Exercise physiology: Human bioenergetics and its applications. Boston, MA: McGraw-Hill.

Sunday, March 26, 2017

Lipotoxicity or tired pancreas? Abnormal fat metabolism as a possible precondition for type 2 diabetes

The term “diabetes” is used to describe a wide range of diseases of glucose metabolism; diseases with a wide range of causes. The diseases include type 1 and type 2 diabetes, type 2 ketosis-prone diabetes (which I know exists thanks to Michael Barker’s blog), gestational diabetes, various MODY types, and various pancreatic disorders. The possible causes include genetic defects (or adaptations to very different past environments), autoimmune responses, exposure to environmental toxins, as well as viral and bacterial infections; in addition to obesity, and various other apparently unrelated factors, such as excessive growth hormone production.

Type 2 diabetes and the “tired pancreas” theory

Type 2 diabetes is the one most commonly associated with the metabolic syndrome, which is characterized by middle-age central obesity, and the “diseases of civilization” brought up by Neolithic inventions. Evidence is mounting that a Neolithic diet and lifestyle play a key role in the development of the metabolic syndrome. In terms of diet, major suspects are engineered foods rich in refined carbohydrates and refined sugars. In this context, one widely touted idea is that the constant insulin spikes caused by consumption of those foods lead the pancreas (figure below from Wikipedia) to get “tired” over time, losing its ability to produce insulin. The onset of insulin resistance mediates this effect.



Empirical evidence against the “tired pancreas” theory

This “tired pancreas” theory, which refers primarily to the insulin-secreting beta-cells in the pancreas, conflicts with a lot of empirical evidence. It is inconsistent with the existence of isolated semi/full hunter-gatherer groups (e.g., the Kitavans) that consume large amounts of natural (i.e., unrefined) foods rich in easily digestible carbohydrates from tubers and fruits, which cause insulin spikes. These groups are nevertheless generally free from type 2 diabetes. The “tired pancreas” theory conflicts with the existence of isolated groups in China and Japan (e.g., the Okinawans) whose diets also include a large proportion of natural foods rich in easily digestible carbohydrates, which cause insulin spikes. Yet these groups are generally free from type 2 diabetes.

Humboldt (1995), in his personal narrative of his journey to the “equinoctial regions of the new continent”, states on page 121 about the natives as a group that: "… between twenty and fifty years old, age is not indicated by wrinkling skin, white hair or body decrepitude [among natives]. When you enter a hut is hard to differentiate a father from son …" A large proportion of these natives’ diets included plenty of natural foods rich in easily digestible carbohydrates from tubers and fruits, which cause insulin spikes. Still, there was no sign of any condition that would suggest a prevalence of type 2 diabetes among them.

At this point it is important to note that the insulin spikes caused by natural carbohydrate-rich foods are much less pronounced than the ones caused by refined carbohydrate-rich foods. The reason is that there is a huge gap between the glycemic loads of natural and refined carbohydrate-rich foods, even though the glycemic indices may be quite similar in some cases. Natural carbohydrate-rich foods are not made mostly of carbohydrates. Even an Irish (or white) potato is 75 percent water.

More insulin may lead to abnormal fat metabolism in sedentary people

The more pronounced spikes may lead to abnormal fat metabolism because more body fat is force-stored than it would have been with the less pronounced spikes, and stored body fat is not released just as promptly as it should be to fuel muscle contractions and other metabolic processes. Typically this effect is a minor one on a daily basis, but adds up over time, leading to fairly unnatural patterns of fat metabolism in the long run. This is particularly true for those who lead sedentary lifestyles. As for obesity, nobody gets obese in one day. So the key problem with the more pronounced spikes may not be that the pancreas is getting “tired”, but that body fat metabolism is not normal, which in turn leads to abnormally high or low levels of important body fat-derived hormones (e.g., high levels of leptin and low levels of adiponectin).

One common characteristic of the groups mentioned above is absence of obesity, even though food is abundant and often physical activity is moderate to low. Repeat for emphasis: “… even though food is abundant and often physical activity is moderate to low”. Note that having low levels of activity is not the same as spending the whole day sitting down in a comfortable chair working on a computer. Obviously caloric intake and level of activity among these groups were/are not at the levels that would lead to obesity. How could that be possible? See this post for a possible explanation.

Excessive body fat gain, lipotoxicity, and type 2 diabetes

There are a few theories that implicate the interaction of abnormal fat metabolism with other factors (e.g., genetic factors) in the development of type 2 diabetes. Empirical evidence suggests that this is a reasonable direction of causality. One of these theories is the theory of lipotoxicity.

Several articles have discussed the theory of lipotoxicity. The article by Unger & Zhou (2001) is a widely cited one. The theory seems to be widely based on the comparative study of various genotypes found in rats. Nevertheless, there is mounting evidence suggesting that the underlying mechanisms may be similar in humans. In a nutshell, this theory proposes the following steps in the development of type 2 diabetes:

    (1) Abnormal fat mass gain leads to an abnormal increase in fat-derived hormones, of which leptin is singled out by the theory. Some people seem to be more susceptible than others in this respect, with lower triggering thresholds of fat mass gain. (What leads to exaggerated fat mass gains? The theory does not go into much detail here, but empirical evidence from other studies suggests that major culprits are refined grains and seeds, as well as refined sugars; other major culprits seem to be trans fats, and vegetable oils rich in linoleic acid.)

    (2) Resistance to fat-derived hormones sets in. Again, leptin resistance is singled out as the key here. (This is a bit simplistic. Other fat-derived hormones, like adiponectin, seem to clearly interact with leptin.) Since leptin regulates fatty acid metabolism, the theory argues, leptin resistance is hypothesized to impair fatty acid metabolism.

    (3) Impaired fat metabolism causes fatty acids to “spill over” to tissues other than fat cells, and also causes an abnormal increase in a substance called ceramide in those tissues. These include tissues in the pancreas that house beta-cells, which secrete insulin. In short, body fat should be stored in fat cells (adipocytes), not outside them.

    (4) Initially fatty acid “spill over” to beta-cells enlarges them and makes them become overactive, leading to excessive insulin production in response to carbohydrate-rich foods, and also to insulin resistance. This is the pre-diabetic phase where hypoglycemic episodes happen a few hours following the consumption of carbohydrate-rich foods. Once this stage is reached, several natural carbohydrate-rich foods also become a problem (e.g., potatoes and bananas), in addition to refined carbohydrate-rich foods.

    (5) Abnormal levels of ceramide induce beta-cell apoptosis in the pancreas. This is essentially “death by suicide” of beta cells in the pancreas. What follows is full-blown type 2 diabetes. Insulin production is impaired, leading to very elevated blood glucose levels following the consumption of carbohydrate-rich foods, even if they are unprocessed.

It is widely known that type 2 diabetics have impaired glucose metabolism. What is not so widely known is that usually they also have impaired fatty acid metabolism. For example, consumption of the same fatty meal is likely to lead to significantly more elevated triglyceride levels in type 2 diabetics than non-diabetics, after several hours. This is consistent with the notion that leptin resistance precedes type 2 diabetes, and inconsistent with the “tired pancreas” theory.

Weak and strong points of the theory of lipotoxicity

A weakness of the theory of lipotoxicity is its strong lipophobic tone; at least in the articles that I have read. There is ample evidence that eating a lot of the ultra-demonized saturated fat, per se, is not what makes people obese or type 2 diabetic. Yet overconsumption of trans fats and vegetable oils rich in linoleic acid does seem to be linked with obesity and type 2 diabetes. (So does the consumption of refined grains and seeds, and refined sugars.) The theory of lipotoxicity does not seem to make these distinctions.

In defense of the theory of lipotoxicity, it does not argue that there cannot be thin diabetics. Many type 1 diabetics are thin. Type 2 diabetics can also be thin, although this is much less common. In certain individuals, the threshold of body fat gain that will precipitate lipotoxicity may be quite low. In others, the same amount of body fat gain (or more) may in fact increase their insulin sensitivity under certain circumstances – e.g., when growth hormone levels are abnormally low.

Autoimmune disorders, perhaps induced by environmental toxins, or toxins found in certain refined foods, may cause the immune system to attack the beta-cells in the pancreas. This may lead to type 1 diabetes if all beta cells are destroyed, or something that can easily be diagnosed as type 2 (or type 1.5) diabetes if only a portion of the cells are destroyed, in a way that does not involve lipotoxicity.

Nor does the theory of lipotoxicity predict that all those who become obese will develop type 2 diabetes. It only suggests that the probability will go up, particularly if other factors are present (e.g., genetic propensity). There are many people who are obese during most of their adult lives and never develop type 2 diabetes. On the other hand, some groups, like Hispanics, tend to develop type 2 diabetes more easily (often even before they reach the obese level). One only has to visit the South Texas region near the Rio Grande border to see this first hand.

What the theory proposes is a new way of understanding the development of type 2 diabetes; a way that seems to make more sense than the “tired pancreas” theory. The theory of lipitoxicity may not be entirely correct. For example, there may be other mechanisms associated with abnormal fat metabolism and consumption of Neolithic foods that cause beta-cell “suicide”, and that have nothing to do with lipotoxicity as proposed by the theory. (At least one fat-derived hormone, tumor necrosis factor-alpha, is associated with abnormal cell apoptosis when abnormally elevated. Levels of this hormone go up immediately after a meal rich in refined carbohydrates.) But the link that it proposes between obesity and type 2 diabetes seems to be right on target.

Implications and thoughts

Some implications and thoughts based on the discussion above are the following. Some are extrapolations based on the discussion in this post combined with those in other posts. At the time of this writing, there were hundreds of posts on this blog, in addition to many comments stemming from over 2.5 million page views. See under "Labels" at the bottom-right area of this blog for a summary of topics addressed. It is hard to ignore things that were brought to light in previous posts.

    - Let us start with a big one: Avoiding natural carbohydrate-rich foods in the absence of compromised glucose metabolism is unnecessary. Those foods do not “tire” the pancreas significantly more than protein-rich foods do. While carbohydrates are not essential macronutrients, protein is. In the absence of carbohydrates, protein will be used by the body to produce glucose to supply the needs of the brain and red blood cells. Protein elicits an insulin response that is comparable to that of natural carbohydrate-rich foods on a gram-adjusted basis (but significantly lower than that of refined carbohydrate-rich foods, like doughnuts and bagels). Usually protein does not lead to a measurable glucose response because glucagon is secreted together with insulin in response to ingestion of protein, preventing hypoglycemia.

    - Abnormal fat gain should be used as a general measure of one’s likelihood of being “headed south” in terms of health. The “fitness” level for men and women shown on the table in this post seem like good targets for body fat percentage. The problem here, of course, is that this is not as easy as it sounds. Attempts at getting lean can lead to poor nutrition and/or starvation. These may make matters worse in some cases, leading to hormonal imbalances and uncontrollable hunger, which will eventually lead to obesity. Poor nutrition may also depress the immune system, making one susceptible to a viral or bacterial  infection that may end up leading to beta-cell destruction and diabetes. A better approach is to place emphasis on eating a variety of natural foods, which are nutritious and satiating, and avoiding refined ones, which are often addictive “empty calories”. Generally fat loss should be slow to be healthy and sustainable.

    - Finally, if glucose metabolism is compromised, one should avoid any foods in quantities that cause an abnormally elevated glucose or insulin response. All one needs is an inexpensive glucose meter to find out what those foods are. The following are indications of abnormally elevated glucose and insulin responses, respectively: an abnormally high glucose level 1 hour after a meal (postprandial hyperglycemia); and an abnormally low glucose level 2 to 4 hours after a meal (reactive hypoglycemia). What is abnormally high or low? Take a look at the peaks and troughs shown on the graph in this post; they should give you an idea. Some insulin resistant people using glucose meters will probably realize that they can still eat several natural carbohydrate-rich foods, but in small quantities, because those foods usually have a low glycemic load (even if their glycemic index is high).

Lucy was a vegetarian and Sapiens an omnivore. We apparently have not evolved to be pure carnivores, even though we can be if the circumstances require. But we absolutely have not evolved to eat many of the refined and industrialized foods available today, not even the ones marketed as “healthy”. Those foods do not make our pancreas “tired”. Among other things, they “mess up” fat metabolism, which may lead to type 2 diabetes through a complex process involving hormones secreted by body fat.

References

Humboldt, A.V. (1995). Personal narrative of a journey to the equinoctial regions of the new continent. New York, NY: Penguin Books.

Unger, R.H., & Zhou, Y.-T. (2001). Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes, 50(1), S118-S121.

Monday, February 27, 2017

Want to make coffee less acidic? Add cream to it

The table below is from a 2008 article by Ehlen and colleagues (), showing the amount of erosion caused by various types of beverages, when teeth were exposed to them for 25 h in vitro. Erosion depth is measured in microns. The third row shows the chance probabilities (i.e., P values) associated with the differences in erosion of enamel and root.


As you can see, even diet drinks may cause tooth erosion. That is not to say that if you drink a diet soda occasionally you will destroy your teeth, but regular drinking may be a problem. I discussed this study in a previous post (). After that post was published here some folks asked me about coffee, so I decided to do some research.

Unfortunately coffee by itself can also cause some erosion, primarily because of its acidity. Generally speaking, you want a liquid substance that you are interested in drinking to have a pH as close to 7 as possible, as this pH is neutral (). Tap and mineral water have a pH that is very close to 7. Black coffee seems to have a pH of about 4.8.

Also problematic are drinks containing fermentable carbohydrates, such as sucrose, fructose, glucose, and lactose. These are fermented by acid-producing bacteria. Interestingly, when fermentable carbohydrates are consumed as part of foods that require chewing, such as fruits, acidity is either neutralized or significantly reduced by large amounts of saliva being secreted as a result of the chewing process.

So what to do about coffee?

One possible solution is to add heavy cream to it. A small amount, such as a teaspoon, appears to bring the pH in a cup of coffee to a little over 6. Another advantage of heavy cream is that it has no fermentable carbohydrates; it has no carbohydrates, period. You will have to get over the habit of drinking sweet beverages, including sweet coffee, if you were unfortunate enough to develop that habit (like so many people living in cities today).

It is not easy to find reliable pH values for various foods. I guess dentistry researchers are more interested in ways of repairing damage already done, and there doesn't seem to be much funding available for preventive dentistry research. Some pH testing results from a University of Cincinnati college biology page were available at the time of this writing; they appeared to be reasonably reliable the last time I checked them ().

Monday, January 30, 2017

Blood glucose variations in normal individuals: A chaotic mess

I love statistics. But statistics is the science that will tell you that each person in a group of 20 people ate half a chicken per week over six months, until you realize that 10 died because they ate nothing while the other 10 ate a full chicken every week.

Statistics is the science that will tell you that there is an “association” between these two variables: my weight from 1 to 20 years of age, and the price of gasoline during that period. These two variables are indeed highly correlated, by neither has influenced the other in any way.

This is why I often like to see the underlying numbers when I am told that such and such health measure on average is this or that, or that this or that disease is associated with elevated consumption of whatever. Statistical results must be interpreted carefully. Lying with statistics is very easy.

A case in point is that of blood glucose variations among normal individuals. Try plotting them on graphs. What do you see? A chaotic mess, even when the individuals are pre-screened to exclude anybody with blood glucose abnormalities that would even hint at pre-diabetes. You see wild fluctuations that, while not going up to levels like 200 mg/dl, are much less predictable than many people are told they should be.

Blood glucose levels are influenced by so many factors (Elliott & Elliott, 2009) that I would be surprised if they were as smooth as those in graphs that are frequently used to show how blood glucose is supposed to vary in healthy individuals. Often we see a flat line up until the time of a meal, when the line curves up rapidly and then goes down quickly. It usually peaks at around 140 mg/dl, dropping well below 120 mg/dl after 2 hours.

Those smooth graphs are usually obtained through algorithms that have statistical methods at their core. The algorithms are designed to generate a smooth representations of scattered or disorganized data points. A little bit like the algorithms in software tools that plot best-fit regression curves passing through scattered points (e.g., warppls.com).

The picture below (click on it to enlarge) is from a 2006 symposium presentation by Prof. J.S. Christiansen, who is a widely cited diabetes researcher. The whole presentation is available from: www.diabetes-symposium.org. It shows the blood glucose variations of 21 young and normal individuals, based on data collected over a period of 2 days. Each individual is represented by a different color. The points on each curve are actually averages of two blood glucose measurements; the original measurements themselves vary even more chaotically.


As you can see from the picture above, each individual has a unique set of responses to main meals, which are represented by the three main blood glucose peaks. Overall, blood glucose levels vary from about 50 to 170 mg/dl, and in several cases remain above 120 mg/dl after 2 hours since a large meal. They vary somewhat chaotically during the night as well, often getting up to around 110 mg/dl.

And these are only 21 individuals, not 100 or 1000. Again, these individuals were all normal (i.e., normoglycemic, in medical research parlance), with an average glycated hemoglobin (HbA1c) of 5 percent, and a range of variation of HbA1c of 4.3 to 5.4 percent.

We can safely assume that these individuals were not on a low carbohydrate diet. The spikes in blood glucose after meals suggest that they were eating foods loaded with refined carbohydrates and/or sugars, particularly for breakfast. So, we can also safely assume that they were somewhat "desensitized" (in terms of glucose response) to those types of foods. Someone who had been on a low carbohydrate diet for a while, and who would thus be more sensitive, would have had even wilder blood glucose variations in response to the same meals.

Many people measure their glucose levels throughout the day with portable glucometers, and quite a few are likely to self-diagnose as pre-diabetics when they see something that they think is a “red flag”. Examples are a blood glucose level peaking at 165 mg/dl, or remaining above 120 mg/dl after 2 hours passed since a meal. Another example is a level of 110 mg/dl when they wake up very early to go to work, after several hours of fasting.

As you can see from the picture above, these “red flag” events do occur in young normoglycemic individuals.

If seeing “red flags” helps people remove refined carbohydrates and sugars from their diet, then fine.

But it may also cause them unnecessary chronic stress, and stress can kill.

Reference:

Elliott, W.H., & Elliott, D.C. (2009). Biochemistry and molecular biology. 4th Edition. New York: NY: Oxford University Press.